Sculpting Liquids with Ultrathin Shells

Timounay, Y; Hartwell, AR; [...] Demery, V; Paulsen, JD
Phys. Rev. Lett. 127, 108002
10.1103/PhysRevLett.127.108002

Thin elastic films can spontaneously attach to liquid interfaces, offering a platform for tailoring their physical, chemical, and optical properties. Current understanding of the elastocapillarity of thin films is based primarily on studies of planar sheets. We show that curved shells can be used to manipulate interfaces in qualitatively different ways. We elucidate a regime where an ultrathin shell with vanishing bending rigidity imposes its own rest shape on a liquid surface, using experiment and theory. Conceptually, the pressure across the interface "inflates" the shell into its original shape. The setup is amenable to optical applications as the shell is transparent, free of wrinkles, and may be manufactured over a range of curvatures.


Top



See also...

Static Bell test in pilot-wave hydrodynamics

Since its discovery in 2005, the hydrodynamic pilot-wave system has provided a concrete macroscopic realization of wave-particle duality and (…) 

> More...

Noise-induced collective actuation in active solids

Collective actuation describes the spontaneous synchronized oscillations taking place in active solids when the elasto-active feedback, which (…) 

> More...