Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes

Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with plastic production doubling every 15 years. The relatively low cost of petroleum-based polymers encourages their single use and overconsumption. Synthetic plastics are recalcitrant to biodegradation, and mismanagement of plastic waste leads to their accumulation in the ecosystem, resulting in a disastrous environmental footprint. Enzymes capable of depolymerizing plastics have been reported recently that may provide a starting point for eco-friendly plastic recycling routes. However, some questions remain about the mechanisms by which enzymes can digest insoluble solid substrates. We review the characterization and engineering of plastic-eating enzymes and provide some comparisons with the field of lignocellulosic biomass valorization.


Volume13: Page: 457-479
Published: JUL 2022

By: Gomes, Margarida; Rondelez,Yannick; Leibler, Ludwik

[DOI10.1146/annurev-chembioeng-092120-091054 https://www.annualreviews.org/doi/1...]


See also...

Hydrodynamic superradiance in wave-mediated cooperative tunneling

Superradiance occurs in quantum optics when the emission rate of photons from multiple atoms is enhanced by inter-atom interactions. When the (...) 

> More...

Universal motifs and the diversity of autocatalytic systems

Autocatalysis is essential for the origin of life and chemical evolution. However, the lack of a unified framework so far prevents a systematic (...) 

> More...