Linear Instability of Turbulent Channel Flow br


Laminar-turbulent pattern formation is a distinctive feature of the intermittency regime in subcriticalplane shear flows. By performing extensive numerical simulations of the plane channel flow, we show thatthe pattern emerges from a spatial modulation of the turbulent flow, due to a linear instability. We sampleover many realizations the linear response of the fluctuating turbulent field to a temporal impulse, in theregime where the turbulent flow is stable, just before the onset of the instability. The dispersion relation isconstructed from the ensemble-averaged relaxation rates. As the instability threshold is approached, therelaxation rate of the least damped modes eventually reaches zero. The method allows, despite the presenceof turbulent fluctuations and without any closure model, for an accurate estimation of the wave vector of themodulation at onset

PHYSICAL REVIEW LETTERS

By: Kashyap, Pavan V. / Duguet, Yohann / Dauchot, Olivier

Volume 129, Issue 24, Article Number 244501
DOI: https://doi.org/10.1103/PhysRevLett.129.244501

Published DEC 2022


Top



See also...

Dynamical Facilitation Governs the Equilibration Dynamics of Glasses

Convincing evidence of domain growth in the heating of ultrastable glasses suggests that the equilibration dynamics of supercooled liquids could (…) 

> More...

Statistical self-organization of a gas of interacting walking drops in a confining potential

A drop bouncing on a vertically-vibrated surface may self-propel forward by standing waves and travels along a fluid interface. This system called (…) 

> More...