Programming Directed Motion with DNA-Grafted Particles

Colloidal particles can be programmed to interact in complex ways by functionalizing them with DNA oligonucleotides. Adding DNA strand-displacement reactions to the system allows these interparticle interactions to respond to specific changes in temperature. We present the requirements for thermally driven directed motion of colloidal particles, and we explore how these conditions can be realized experimentally using strand-displacement reactions. To evaluate the concept, we build and test a colloidal "dancer": a single particle that can be driven to move through a programmed sequence of steps along a one-dimensional track composed of other particles. The results of these tests reveal the capabilities and limitations of using DNA-mediated interactions for applications in dynamic systems. Specifically, we discuss how to design the substrate to limit complexity while permitting full control of the motile component, how to ratchet the interactions to move over many substrate positions with a limited regime of control parameters, and how to use technological developments to reduce the probability of detachment without sacrificing speed.

Volume: 16 Issue: 6 Page: 9195-9202
Published: JUN 2022
By: Gehrels, Emily W.; Rogers, W. Benjamin; Zeravcic, Zorana; Manoharan, Vinothan N.



See also...

Uncovering polymer’s unique spindle structure

A new study from Daeseok Kim and Teresa Lopez-Leon of Gulliver lab, in collaboration with Helen Ansell, Randall Kamien, and Eleni Katifori of the (...) 

> More...

Rearrangement of two dimensional aggregates of droplets under compression

We study signatures of the energy landscape‚Äôs evolution through the crystal-to-glass transition by compressing two dimensional (2D) finite (...) 

> More...