Sculpting Liquids with Ultrathin Shells

Timounay, Y; Hartwell, AR; [...] Demery, V; Paulsen, JD
Phys. Rev. Lett. 127, 108002
10.1103/PhysRevLett.127.108002

Thin elastic films can spontaneously attach to liquid interfaces, offering a platform for tailoring their physical, chemical, and optical properties. Current understanding of the elastocapillarity of thin films is based primarily on studies of planar sheets. We show that curved shells can be used to manipulate interfaces in qualitatively different ways. We elucidate a regime where an ultrathin shell with vanishing bending rigidity imposes its own rest shape on a liquid surface, using experiment and theory. Conceptually, the pressure across the interface "inflates" the shell into its original shape. The setup is amenable to optical applications as the shell is transparent, free of wrinkles, and may be manufactured over a range of curvatures.


Top



See also...

Traveling fronts in vibrated polar disks: At the crossroad between polar ordering and jamming

We investigate experimentally the collective motion of polar vibrated disks in an annular geometry, varying both the packing fraction and the (...) 

> More...

Multilevel selection in the evolution of sexual dimorphism in phenotypic plasticity

Phenotypes are partly shaped by the environment, which can impact bothshort-term adaptation and long-term evolution. In dioecious species, thetwo (...) 

> More...