Reconfiguration, Interrupted Aging and Enhanced Dynamics of a Colloidal Gel using Photo-Switchable Active Doping

We study light-activated quasi-2d gels made of a colloidal network doped with Janus particles. Following the gel formation, the internal dynamics of the gel are monitored before, during, and after the light activation. We monitor both the structure and dynamics, before, during and after the illumination period. The mobility of the passive particles exhibits a characteristic scale-dependent response. Immediately following light activation, the gel displays large-scale reorganization, followed by progressive, short-scale displacements throughout the activation period. Albeit subtle structural changes (including pore opening and widening and shortening of strands) the colloidal network remains connected, and the gel maintains its structural integrity. Once activity is switched off, the gel keeps the memory of the structure inherited from the active phase. Remarkably, the motility remains larger than that of the gel, before the active period. The system has turned into a genuinely different gel, with frozen dynamics, but with more space for thermal fluctuations. The above conclusions remain valid long after the activity period.

PHYSICAL REVIEW LETTERS

By: Mengshi Wei, Matan Yah Ben Zion and Olivier Dauchot.

Phys. Rev. Lett. 131, 018301 – Published 7 July 2023

DOI: https://journals.aps.org/prl/abstra...


Top



See also...

Adaptive Phototaxis of a Swarm of Mobile Robots using Positive and Negative Feedback Self-Alignment

In this paper, we explore how robots in a swarm can individually exploit collisions to produce self-organizing behaviours at the macroscopic (...) 

> More...

Damping-Driven Time Reversal for Waves

Damping is usually associated with irreversibility. Here, we present a counterintuitive concept to achieve time reversal of waves propagating in (...) 

> More...