Reconfiguration, Interrupted Aging and Enhanced Dynamics of a Colloidal Gel using Photo-Switchable Active Doping

We study light-activated quasi-2d gels made of a colloidal network doped with Janus particles. Following the gel formation, the internal dynamics of the gel are monitored before, during, and after the light activation. We monitor both the structure and dynamics, before, during and after the illumination period. The mobility of the passive particles exhibits a characteristic scale-dependent response. Immediately following light activation, the gel displays large-scale reorganization, followed by progressive, short-scale displacements throughout the activation period. Albeit subtle structural changes (including pore opening and widening and shortening of strands) the colloidal network remains connected, and the gel maintains its structural integrity. Once activity is switched off, the gel keeps the memory of the structure inherited from the active phase. Remarkably, the motility remains larger than that of the gel, before the active period. The system has turned into a genuinely different gel, with frozen dynamics, but with more space for thermal fluctuations. The above conclusions remain valid long after the activity period.

PHYSICAL REVIEW LETTERS

By: Mengshi Wei, Matan Yah Ben Zion and Olivier Dauchot.

Phys. Rev. Lett. 131, 018301 – Published 7 July 2023

DOI: https://journals.aps.org/prl/abstra...


Top



See also...

DNA nanotechnology to detect cancer biomarkers

How to detect diseases at the earliest stages of development? This is the problematic raised by most scientists and physicians, focusing on new (...) 

> More...

Nanoparticle Taylor Dispersion Near Charged Surfaces with an Open Boundary

The dispersive spreading of microscopic particles in shear flows is influenced both by advection and thermal motion. At the nanoscale, (...) 

> More...