DNA circuit-based immunoassay for ultrasensitive protein pattern classification

Cytokines are important immune modulators, and pivotal biomarkers for the diagnostic of various diseases. In standard analytical procedure, each protein is detected individually, using for instance gold standard ELISA protocols or nucleic acid amplification-based immunoassays. In recent years, DNA nanotechnology has been employed for creating sophisticated biomolecular systems that perform neuromorphic computing on molecular inputs, opening the door to concentration pattern recognition for biomedical applications. This work introduces immuno-PUMA (i-PUMA), an isothermal amplification-based immunoassay for ultrasensitive protein detection. The assay couples the convenience of supported format of an ELISA protocol with the computing capabilities of a DNA/enzyme circuit. We demonstrate a limit of detection of 2.1 fM, 8.7 fM and 450 aM for IL12, IL4 and IFNγ cytokines, respectively, outperforming the traditional ELISA format. i-PUMA’s versatility extends to molecular computation, allowing the creation of 2-input perceptron-like classifiers for IL12 and IL4, with tunable weight sign and amplitude. Overall, i-PUMA represents a sensitive, low-cost, and versatile immunoassay with potential applications in multimarker-based sample classification, complementing existing molecular profiling techniques.

Royal Society of chemisty

By: Antoine Masurier, Rémi Sieskind, Guillaume Gines and Yannick Rondelez.

First published- 29 Aug 2024

DOI: https://doi.org/10.1039/D4AN00728J


Top



See also...

Programming Directed Motion with DNA-Grafted Particles

Colloidal particles can be programmed to interact in complex ways by functionalizing them with DNA oligonucleotides. Adding DNA (...) 

> More...

Pattern formation by turbulent cascades

Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at (...) 

> More...