Universal motifs and the diversity of autocatalytic systems

Autocatalysis is essential for the origin of life and chemical evolution. However, the lack of a unified framework so far prevents a systematic study of autocatalysis. Here, we derive, from basic principles, general stoichiometric conditions for catalysis and auto-catalysis in chemical reaction networks. This allows for a classification of minimal autocatalytic motifs called cores. While all known autocatalytic systems indeed contain minimal motifs, the classification also reveals hitherto unidentified motifs. We further examine conditions for kinetic viability of such networks, which depends on the autocatalytic motifs they contain and is notably increased by internal catalytic cycles. Finally, we show how this framework extends the range of conceivable autocatalytic systems, by applying our stoichiometric and kinetic analysis to autocatalysis emerging from coupled compartments. The unified approach to autocatalysis presented in this work lays a foundation toward the building of a systems-level theory of chemical evolution.

(A) Five minimal motifs. Orange squares indicate where further nodes and reactions may be added, provided this preserves the motif type (I, II, III, IV, V) and minimality. (B and C) Examples of chemical networks, along with their autocatalytic cores. Blue, external species; yellow, autocatalysts. (B) Type I: Breslow’s 1959 mechanism for the formose reaction (32). (C) Type II: Another autocatalytic cycle in the formose reaction. Species denoted as Cx inside the nodes refer to molecules containing x carbon atoms, which are shown below in standard chemical representation.

Reference: Alex Blokhuis, David Lacoste, and Philippe Nghe
PNAS October 13, 2020 117 (41) 25230-25236
doi.org/10.1073/pnas.2013527117


Top



See also...

Dramatic Effect of Water Structure on Hydration Forces and the Electrical Double Layer

Forces between hydrophilic surfaces mediated by water are important in various systems from lipid membranes and solid surfaces to colloids and (...) 

> More...

Kinetic Monte Carlo Algorithms for Active Matter Systems

Juliane U. Klamser, Olivier Dauchot, and Julien Tailleur Phys. Rev. Lett. 127, 150602 10.1103/PhysRevLett.127.150602 We study kinetic Monte Carlo (...) 

> More...