Microscopic foundation of the mu(I) rheology for dense granular flows on inclined planes

Macroscopic and microscopic properties of dense granular layers flowing down inclined planes are obtained from Discrete-Element-Method simulations for both frictionless and frictional grains. Three fundamental observations for dense granular flows are recovered, namely the occurrence of a critical stress, the Bagnold velocity profile, as well as well-defined friction and dilatancy laws. The microscopic aspects of the grain motion highlight the formation of transient clusters. From this microscopic picture, we derive a theoretical scaling model without any empirical input that explains quantitatively the fundamental laws of dense granular flows in incline plane and shear geometries. The adequacy between the model and the observed results suggests that granular flows can be viewed as flows from thermal fluids of hard spheres.

PHYSICAL REVIEW RESEARCH

By: Dumont, Denis / Bonneau, Haggai / Salez, Thomas / Raphael, Elie / Damman, Pascal

Volume 5, Issue 1, Article Number 013089
DOI: https://doi.org/10.1103/PhysRevResearch.5.013089

Published FEB 2023


Top



See also...

Martingale drift of Langevin dynamics and classical canonical spin statistics

A martingale is a stochastic process that encodes a kind of fairness or unbiasedness, which is associated with a reference process. Here we show (...) 

> More...

Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes

Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with (...) 

> More...