Contactless Rheology of Soft Gels Over a Broad Frequency Range

We report contactless measurements of the viscoelastic rheological properties of soft gels. The experiments are performed using a colloidal-probe atomic force microscope in a liquid environment and in dynamic mode. The mechanical response is measured as a function of the liquid gap thickness for different oscillation frequencies. Our measurements reveal an elastohydrodynamic coupling between the flow induced by the probe oscillation and the viscoelastic deformation of the gels. The data are quantitatively described by a viscoelastic lubrication model. The frequency-dependent storage and loss moduli of the polydimethylsiloxane gels are extracted from fits of the data to the model and are in good agreement with the Chasset-Thirion law. Our results demonstrate that contactless colloidal-probe methods are powerful tools that can be used for probing soft interfaces finely over a wide range of frequencies.

PHYSICAL REVIEW APPLIED

Volume 17: Issue: 6
Article Number: 064045
Published: JUN 2022

By: Zhang, Zaicheng / Arshad, Muhammad / Bertin, Vincent / Almohamad, Samir / Raphael, Elie / Salez, Thomas / Maali, Abdelhamid

[DOI10.1103/PhysRevApplied.17.064045 https://journals.aps.org/prapplied/...]


Top



See also...

In Vitro Enzyme Self-Selection Using Molecular Programs

Directed evolution provides a powerful route for in vitro enzyme engineering. State-of-the-art techniques functionally screen up to millions of (...) 

> More...

Uncovering polymer’s unique spindle structure

A new study from Daeseok Kim and Teresa Lopez-Leon of Gulliver lab, in collaboration with Helen Ansell, Randall Kamien, and Eleni Katifori of the (...) 

> More...